Mathematics Extension 2 Term 4 Assessment 2005

Question 1 (15 Marks) Marks Given that $\alpha = 3 + 2i$ and $\mu = 2 - 5i$, find (a) 2 (i) $\alpha\mu$ 1 (ii) $Re(\alpha\mu)$ (iii) $Im(\alpha \mu)$ 1 Describe geometrically, on an Argand diagram (b) Re(z) = 2. 1 (i) (ii) Im(z) < 21 Expand and simplify $(2-3i)^4$ 3 (c) Calculate the modulus of the product of the roots of the equation 3 (d) $(2+i)x^2 + 3x - (1-i) = 0.$ Show that the point representing $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ is on a circle with radius 1 (e) 3 and centre at (1, 0). **Question 2 (15 Marks)** The complex number $z = \sqrt{3} + i$ is represented on an Argand diagram by the point A. (a) The points B, C, D and E are the points representing -z, iz, 1-z and \bar{z} 4 (i) respectively. Mark clearly on an Argand diagram the points A, B, C, D, and E. Clearly indicate important geometrical relationships between these points. (ii) F is the point in the second quadrant such that $\triangle ABF$ is equilateral. 2 What complex number is represented by the point F? Find $\sqrt{6i-8}$, in the form a+ib. (b) (i) 3 (ii) Hence, solve the equation $2z^2 - (3 + i)z + 2 = 0$, expressing the values of z 2 in the form a + ib. A point z on the Argand diagram is given by $z = w^2 + 2iw$, where w = u + ivand u and v are real. Find the locus of z when (i) u = 0 and v varies. 1 (ii) v = 1 and u varies. 1 (iii) Sketch the two loci, showing any important features. 2

Mathematics Extension 2 Term 4 Assessment 2005

(a) Sketch the locus $|z + 2 - 3i| \le 5$. 2 (b) Show that $w = 2\sqrt{3}i - 2$ is a root of the equation $z^3 = 64$.

(c) If
$$z \neq 0$$
, show that $u = z + \frac{|z|^2}{z}$ is always real, where $z = x + iy$ and $x \in \Re$, $y \in \Re$.

(d) If
$$z = \cos\theta + i\sin\theta$$
, prove that $\frac{2}{1+z} = 1 - i\tan\frac{\theta}{2}$.

- (e) Sketch the region, in an Argand diagram where points satisfy the set of inequalities: $2 \le |z| \le 4$ and $-\frac{\pi}{3} \le \arg z \le \frac{\pi}{3}$.
- (f) Prove that if Z_1 , Z_2 are complex numbers then $|Z_1 Z_2|^2 + |Z_1 + Z_2|^2 = 2\{|Z_1|^2 + |Z_2|^2\}$.

Question 4 (15 Marks)

Question 3 (15 Marks)

(a)
$$2-i$$
 is one root of $x^2-(3-i)x+k=0$. Find k and the other root of the equation.

(b) Sketch the region in the Argand diagram defined by
$$|z^2 - \overline{z}^2| \ge 8$$

(c) (i) Show that
$$(1+i)$$
 is a root of the polynomial $P(x) = x^3 + x^2 - 4x + 6$. 2
(ii) Hence resolve $P(x)$ into irreducible factors over the complex field. 3

(d) Find the fourth roots of
$$2\sqrt{3} + 2i$$
.

Marks

Question 1 (15 Marks)

Marks

Given that $\alpha = 3 + 2i$ and $\mu = 2 - 5i$, find

(i)
$$\alpha \mu = (3 + 2i)(2 - 5i)$$
 1mk $= 11 - 4i$ **1mk**

2

1mk (ii) $Re(\alpha\mu) = 11$

1

(iii) $Im(\alpha\mu) = -4$ 1mk

1

(b) Describe geometrically, on an Argand diagram

(i) Re(z) = 2. y

1

1mk

(ii) Im(z) < 2

1

1mk

Expand and simplify $(2-3i)^4$ (c)

1mk

$$(2-3i)^4 = 2^4 + 4(2)^3(-3i) + 6(2)^2(-3i)^2 + 4(2)(-3i)^3 + (-3i)^4$$

$$= 16 - 96i + 216i^2 - 216i^3 + 81i^4$$
110 + 120: 110

$$=-119+120i$$

3

(d) Calculate the modulus of the product of the roots of the equation $(2+i)x^2 + 3x - (1-i) = 0$.

3

Let the roots be α , β . Then $\alpha\beta = \frac{-1+i}{2+i}$ **1mk**

$$\therefore \alpha \beta = \frac{-1+i}{2+i} \times \frac{2-i}{2-i}$$
$$= \frac{-3+3i}{5} \qquad \boxed{1mk}$$

$$|\alpha\beta| = \sqrt{\left(\frac{-3}{5}\right)^2 + \left(\frac{3}{5}\right)^2} = \frac{3\sqrt{2}}{5}$$
 1mk

(e) Show that the point representing $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ is on a circle with radius 1 and centre at (1, 0).

Let
$$z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$|z| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$
 \Rightarrow equal to radius of circle **Imk**

Now equation of the circle with centre (1,0) and radius 1 is $(x-1)^2 + y^2 = 1$ **1mk**

Since
$$x = \frac{1}{2}$$
 and $y = \frac{\sqrt{3}}{2}$ and substitution into LHS = $\left(\frac{-1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 = RHS$

 $\therefore \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ lies on circle centred (1, 0) and radius 1.

Question 2 (15 Marks)

- (a) The complex number $z = \sqrt{3} + i$ is represented on an Argand diagram by the point A.
 - (i) The points B, C, D and E are the points representing -z, iz, 1-z and \overline{z} respectively. Mark clearly on an Argand diagram the points A, B, C, D, and E. Clearly indicate important geometrical relationships between these points.

- Points B, C, D, E with relationship to point A, award 1mk each
- Just points award 2 marks only

(ii) F is the point in the second quadrant such that $\triangle ABF$ is equilateral. What complex number is represented by the point F?

2

F must be the same distance from A as B is so must have point $(-\sqrt{3},2)$ So has the complex number $z_2 = -\sqrt{3} + 2i$ 1mk

(b) (i) Find $\sqrt{6i-8}$, in the form a+ib.

3

Let $\Delta = 6i - 8$ then let $\Delta = (a + ib)^2$ where a, b are Real $\therefore a^2 - b^2 = -8$ and 2ab = 6 $\therefore ab = 3$ **1mk**

$$\therefore a^{2} - \frac{9}{a^{2}} = -8 \implies a^{4} + 8a^{2} - 9 = 0$$

$$(a^{2} + 9)(a^{2} - 1) = 0 \text{ since } a \text{ is real} \implies a = 1 \text{ or } a = -1 \text{ so } b = 3 \text{ or } b = -3 \text{ respectively.}$$

$$\therefore \sqrt{6i - 8} = 1 + 3i \text{ or } -1 - 3i \text{ 1mk}$$

- (ii) Hence, solve the equation $2z^2 (3+i)z + 2 = 0$, expressing the values of z in the form a + ib.
 - $\therefore z = \frac{(3+i)\pm(1+3i)}{4} \text{ by quadratic formula}$ $\therefore z = 1+i \text{ or } z = \frac{1}{2} \frac{i}{2}$ **1mk**
- (c) A point z on the Argand diagram is given by $z = w^2 + 2iw$, where w = u + iv and u and v are real. Find the locus of z when
 - (i) u = 0 and v varies. when u = 0 then w = iv and $z = -v^2 - 2v$ if z = x + iy where x, y are real $\therefore x = -v^2 - 2v$ and y = 0 \therefore locus is y = 0 Imk
 - (ii) v = 1 and u varies. when v = 1 then w = u + i and $z = (u + i)^2 + 2i(u + i)$ $\therefore z = (u^2 - 3) + 4ui$ $\therefore \text{ if } z = x + iy \text{ where } x, y \text{ are real then}$ $x = u^2 - 3 \text{ and } y = 4u \therefore y^2 = 16(x + 3)$ 1mk
 - (iii) Sketch the two loci, showing any important features.

2

1

See next page 1mk each

Question 3 (15 Marks)

Marks

2

(a) Sketch the locus
$$|z + 2 - 3i| \le 5$$
.

1mk for circle centre (-2,3) and radius= 5

1mk for correct region

Term4_HSC_E2_2005/

(b) Show that $w = 2\sqrt{3}i - 2$ is a root of the equation $z^3 = 64$.

$$w = 2\sqrt{3}i - 2 = 4(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$$

$$\therefore w^3 = 4^3(\cos 2\pi + i\sin 2\pi) \text{ by De Moivre's Theorem}$$

$$= 64 \text{ as required}$$

$$1mk$$

(c) If $z \neq 0$, show that $u = z + \frac{|z|^2}{z}$ is always real, where z = x + iy and $x \in \Re$, $y \in \Re$. z = x + iy then $|z|^2 = x^2 + y^2$ & $z^2 = (x^2 - y^2) + 2ixy$ Imk

Now $u = z + \frac{|z|^2}{z} = \frac{x^2 - y^2 + 2ixy + x^2 + y^2}{x + iy}$ Imk $= \frac{2x(x + iy)}{x + iy}$ Imk = 2x which is real as x is real

Alternatively:

$$u = z + \frac{|z|^2}{z} = z + \frac{|z|^2 \times \overline{z}}{z \times \overline{z}}$$

$$= z + \frac{|z|^2 \times \overline{z}}{(\overline{z})^2}$$

$$= z + \overline{z}$$

$$= x + iy + x - iy$$

$$= 2x \text{ which is real as } x \text{ is real.}$$

(d) If $z = \cos\theta + i\sin\theta$, prove that $\frac{2}{1+z} = 1 - i\tan\frac{\theta}{2}$.

LHS $= \frac{2}{1 + \cos\theta + i\sin\theta} \times \frac{(1 + \cos\theta) - i\sin\theta}{(1 + \cos\theta) - i\sin\theta}$ $= \frac{2 + 2\cos\theta - 2i\sin\theta}{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta}$ $= \frac{2 + 2\cos\theta - 2i\sin\theta}{2 + 2\cos\theta}$ $= 1 - \frac{i\sin\theta}{1 + \cos\theta}$ Imk $= 1 - \frac{2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{1 + 2\cos^2\frac{\theta}{2} - 1}$ Imk $= 1 - \frac{i\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}$ $= 1 - i\tan\frac{\theta}{2} = \text{RHS}$ [Students could also let $t = \tan\frac{\theta}{2}$]

2

- (e) Sketch the region, in an Argand diagram where points satisfy the set of inequalities:
 - $2 \le |z| \le 4$ and $-\frac{\pi}{3} \le \arg z \le \frac{\pi}{3}$.

- 1mk for the boundary
- 1mk for the region

2

(f) Prove that if Z_1 , Z_2 are complex numbers then $|Z_1 - Z_2|^2 + |Z_1 + Z_2|^2 = 2\{|Z_1|^2 + |Z_2|^2\}$.

LHS =
$$|Z_1 - Z_2|^2 + |Z_1 + Z_2|$$

= $(Z_1 + Z_2)(\overline{(Z_1 + Z_2)}) + (Z_1 - Z_2)(\overline{(Z_1 - Z_2)})$ Imk
= $(Z_1 + Z_2)(\overline{Z_1} + \overline{Z_2}) + (Z_1 - Z_2)(\overline{Z_1} - \overline{Z_2})$
= $2(Z_1\overline{Z_1} + Z_2\overline{Z_2})$ Imk
= $2(|Z_1|^2 + |Z_2|^2)$ = RHS Imk

Question 4 (15 Marks)

(a) 2-i is one root of $x^2-(3-i)x+k=0$. Find k and the other root of the equation.

Let α and β be the roots of the equation, so let $\beta = 2 - i$

$$\therefore \alpha + 2 - i = (3 - i) \Rightarrow \alpha = 1$$
1mk

- $\therefore \alpha\beta = k \implies k = 2 i \qquad \boxed{1mk}$
- (b) Sketch the region in the Argand diagram defined by $|z^2 \overline{z}^2| \ge 8$

$$z^{2} - \overline{z}^{2} = (z - \overline{z})(z + \overline{z})$$
$$= (2iy)(2x) = 4ixy$$

$$\therefore \left| z^2 - \overline{z}^2 \right| \ge 4|xy|$$

$$\therefore 4|xy| \ge 8 \Rightarrow |xy| \ge 2 \qquad \boxed{\mathbf{1mk}}$$

2

3

1 mk for the graphs and 1 mk for the correct region.

- (c) (i) Show that (1+i) is a root of the polynomial $P(x) = x^3 + x^2 4x + 6$. If (1+i) is a root then P(1+i) = 0 $P(1+i) = (1+i)^3 + (1+i)^2 - 4(1+i) + 6$ $= 1+3i+3i^2+i^3+1+2i+i^2-4-4i+6$ = 4+i-3-1-i=01mk
 - ∴ (1 + i) is a root of P(x).
 (ii) Hence resolve P(x) into irreducible factors over the complex field.
- 3
- Since P(x) has real coefficients \rightarrow the complex roots occur in conjugate pairs. \therefore (1-i) is also a root. **1mk**
- \therefore Let P(x) have roots (1+i), (1-i) and β

Sum of the roots =
$$(1 + i) + (1 - i) + \beta = -1$$
 $\Rightarrow \beta = -3$ **Imk**

$$P(x) = (x+3) \{ x - (1+i) \} \{ x - (1-i) \}$$
1mk

(d) Find the fourth roots of $2\sqrt{3} + 2i$.

5

Let z = x + iy be one of the fourth roots. Then $z^4 = 2\sqrt{3} + 2i$

 $\therefore z^4 = 16(\cos 4\theta + i\sin 4\theta)$ by De Moivre's Theorem.

Equating the real parts \rightarrow 16cos4 θ = 2 $\sqrt{3}$

Equating imaginary parts \rightarrow 16sin4 θ = 2

- $\therefore \tan 4\theta = \frac{1}{\sqrt{3}} \quad \boxed{1mk} \quad \Rightarrow \quad 4\theta = \frac{\pi}{6} + 2k\pi \text{ where } k \text{ are integers.}$
- $\theta = \frac{(12k+1)\pi}{24}$, where k = 0, 1, -1, -2 **1mk**
- $\therefore \text{ Four roots } \sqrt{3} + i \text{ are: } 2cis\frac{\pi}{24}, \ 2cis\frac{13\pi}{24}, \ 2cis\frac{-11\pi}{24}, \ 2cis\frac{-23\pi}{24}$

⊗ END OF EXAM **⊚**